
J .  FZuid Mech. (1980), wol. 100, part 1, pp. 161-184 

Printed in Great Britain 
161 

On surface pressure fluctuations beneath turbulent flow 
round bluff bodies 

By P. A. DURBIN A N D  J. C .  R. HUNT 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge, Silver Street, 
Cambridge CB3 9EW 

(Received 2 April 1979 and in revised form 29 August 1979) 

Rapid distortion theory is used to  calculate surface pressure fluctuations beneath a 
turbulent flow incident on a two-dimensional bluff body. These pressures depend on 
the ratio, L,/a, of integral scale to  body dimension: we give results in the two asymp- 
totic limits L,/a + 1 and L,/a < 1. The large-scale limit is described by 'quasi- 
steady' theory - which we review here; and for the small-scale limit we introduce a 
' quasi-homogeneous ', or ' slowly-varying ', approximation. The theory is compared 
with field and laboratory measurements and it is found that most measurements lie 
between the theoretical asymptotes, following the predicted trends. 

Anumber of general conclusions have been obtained for which there are new physical 
explanations - and which laboratory and field experiments appear to confirm. 

(i) The r.m.s. pressure fluctuations, p' ,  caused by upwind turbulence, decrease in 
strength with distance from the stagnation point when L,/a < 1; but p' increases 
with distance from the stagnation point when Lw/a 

(ii) For a given dimension of an obstacle, a, transverse to  the flow field, p' increases 
as the dimension, b,  parallel to the flow field increases. At the stagnation point of an 
elliptical cylinder, when L,/a < 1, 

1. 

where &, Urn are the upwind r.m.s. turbulent and mean velocities and p is the density. 
(iii) The fluctuating pressure has a cross-correlation length in the flow direction a 

factor of a / L ,  higher when Lw/a  < 1 than when Lw/a  9 1. I n  the axial direction the 
correlation length is again greater (though this time of the same order in L,/a) when 
the incident turbulence is of small scale than when it is of large scale. 

1. Introduction 
Hunt's (1973) generalization of rapid distortion theory (RDT) has provided an 

avenue of approach to theoretical investigation of turbulent flow around obstacles. 
Being based on the linearized, inviscid equations of hydrodynamics, the theory allows 
one to  pose tractable mathematical problems related to  turbulent flows. In  his (1 973) 
paper Hunt applied the theory to  turbulent flow around a circular cylinder, presenting 
a lengthy analysis of the spectra and covariances of the velocity field near the cylinder 
in a range of asymptotic limits. I n  the present investigation an RDT is developed for 
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the fluctuating surface pressures on a bluff obstacle in the asymptotic limits of: (i) 
large-scale turbulence (L,/a % 1, where L,  is the integral scale of the incident tur- 
bulence and (a) is a length scale of the obstacle); (ii) small-scale turbulence ( E  = La/ 
a < 1). Case (i) is dealt with quite readily using a ‘quasi-steady’ theory (Hunt 1974; 
Armitt, unpublished), which we review in 5 2. Case (ii) is more difficult to treat. 

The main purpose of analysing experimentally unrealistic limits is to  indicate the 
trends in the pressure field as the scale of the turbulence and the scale or the shape of 
an obstacle are changed. (A most useful feature of these rapid-distortion problems is 
that  experimental results a t  intermediate scales are usually intermediate between 
theoretical large-scale and small-scale limits.) The quasi-steady, large-scale limit is 
well known, but only one or two aspects of the small-scale limit have been explored 
theoretically hitherto. The new aspects explored here are the variation of pressure 
spectra, the mean square pressure field and the pressure cross-correlation length 
around two-dimensional cylinders of arbitrary geometry. 

I n  3 3 we introduce a ‘ slowly varying ’, or ‘ quasi-homogeneous ’, approximation for 
small-scale turbulence. Near a surface quasi-homogeneity can be used in the horizontal 
directions only, because variation on the scale, L,, of the turbulence is induced in the 
normal direction by the surface as it blocks the flow; this inhomogeneity is treated 
explicitly here. 

Our analysis of small-scale turbulence is facilitated by the use of velocity-potential, 
stream-function (@, Y) co-ordinates. In  this co-ordinate system the mean trajectories 
of fluid particles and the surface of the body are co-ordinate surfaces. These co- 
ordinates, therefore, simplify the formulation of our equations, which are derived 
with aid of the formalism of differential geometry. Differential geometry (or tensor 
analysis) enables us to  formulate precisely our equations for arbitrary bluff obstacles; 
hence, to  lend rigour to our asymptotic analysis. Readers unfamiliar with this trans- 
parent technique for analysing equations in curvilinear co-ordinates can ‘ see through ’ 
the covariant notation by imagining covariant derivatives (which we denote by ‘;’) 
to  be partial derivatives (which we denote by ‘,’) with respect to a local co-ordinate 
system. Thus, if ‘ 1 ’ denotes the local stream direction, Ul,  is to  be understood as 
‘the derivative of the streamwise velocity in the direction of the stream ’. (Warning: 
superscripts on vectors should not be confused with exponents: U 2  is the velocity in 
the 2 direction. Having been forewarned, this notation should be clear in context.) 

I n  addition to the work of Hunt (1974), a previous application of RDT to surface 
pressure calculation was made by Graham ( 1  976) who computed the fluctuating drag 
on a porous plate in turbulent flow. Durbin & Hunt (1979) used the calculations pre- 
sented herein to estimate fluctuating drag on solid obstacles in turbulent flow. 

Experimental studies of surface pressure fluctuations beneath turbulent flow round 
circular cylinders have been published by Bruun & Davies (1975) and by Batham 
(1 973). These investigators were primarily interested in modelling forces on obstacles 
in natural flows so they studied an obstacle with a wide wake. Figure 1 illustrates a 
typical flow around a bluff obstacle with wake. I n  order to compare the present 
theory with experiment it is assumed here that the wake contribution to fluctuating 
pressures on the front of a cylinder in a turbulent stream is statistically independent 
of the contribution by incident turbulence; and that the existence of a wake does not 
significantly alter the mean flow near the front of the cylinder. This problem is exa- 
mined in the recent comparison of turbulent velocity measurements around a circular 
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FIGURE 1. Schematic representation of a typical flow around a bluff body. 

cylinder with RDT by Britter, Hunt & Mumford (1979). The reader is referred to 
Hunt (1973) for a comprehensive account of this and other assumptions inherent in 
RDT : the following lists some additional relevant assumptions. 

(i) The upstream turbulence intensity is weak, i.e. u: U, << 1.  
(ii) Hunt (1973) suggested &/Urn < L,/a as a criterion for linearization of the 

turbulence distortion. We feel this may be too restrictive, for it is based on a com- 
parison of instantaneous rates of vorticity distortion, rather than on net distortion. 
Thus, instead of requiring, as did Hunt, that 

we require 
ax 
U 
dx 

(0'.  V)u'- 

(w ' .V)  u- 
< 1. s:, 

Sr m U 

Vortex stretching by the mean flow takes place coherently as vortices approach the 
obstacle, so the integration in the denominator of ( 1 )  can be estimated as O(a/U,). 
Turbulent vortex stretching occurs coherently only over an Eulerian time scale, TE, 
so the integration in the numerator is O(T,). The Eulerian scale is assumed to be 
appropriate (in the limit u ' /U < 1)  because, ultimately, the turbulence a t  a $xed 
position is calculated. This scaling leads to  the requirement 

Since the Lagrangian time scale, T,, is O(u',/L,) (2) becomes 

T,/T, < O ( l ) ,  (3) 

where, by O( I), we mean an O( 1 )  effect resulting from vorticity distortion by the mean 
flow. For large eddies TE/TL = O(u;/U,) so condition (ii) reduces to  condition (i). 
For small eddies it is more restrictive. The large eddies, to which the RDT approxi- 
mations are most applicable, are responsible for pressure fluctuations. 

Conditions (i) and (ii) are suggested criteria for linearization of the turbulent vorticity 
equation. For practical purposes, linearization is valid if the turbulence near the 

6-2 
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obstacle scales linearly on the turbulence upstream. I n  flows of present interest this 
has been observed experimentally to be the case (Bruun & Davies 1975, p. 544). 

(iii) The Reynolds numbers U,L,/v and U,u/v are large. 
(iv) The scale of turbulence is large compared with the thickness of the boundary 

layer on the obstacle. 

2. Large-scale incident turbulence: L,/a 4 1 
It has been shown by Hunt (1973, 1974) that the leading term in an expansion in 

a/L,, as u/L, -+ 0, of turbulence properties is described by ‘quasi-steady’ theory. 
Quasi-steady theory is based on the assumption that the only effect of turbulence 
added to the upstream flow will be a small change in angle of incidence and magnitude 
of the upstream velocity. The perturbation flow is therefore irrotational, with proper- 
ties directly derivable from potential flow theory. Mean square pressure fluctuations 
are related simply to mean pressure coefficients and the upstream mean square 
turbulent velocity fluctuations (Hunt 1974). 

The results of quasi-steady theory to be used here are that the mean square pressure 
fluctuation on a circular cylinder in large-scale (initially isotropic) turbulent flow is 

- 
PT= (5-4cosB) ULU‘Z, (4) 

L: = 0*5L,. ( 5 )  

and that the integral scale, L[, along the axial direction is 

The formulae (4) and (5) are compared with experimental data in figures 5 and 8. 
This quasi-steady theory is particularly simple because the incident vorticity is not 

distorted by the obstacle, which only ‘blocks’ the flow, thus producing irrotational 
velocity fluctuations. When the incident turbulence scale is small, distortion, as well 
as blocking, becomes important. We now move on to consider this case. 

3. Rapid-distortion theory 

inviscid vorticity equation 
The RDT as presented by Hunt (1973) hinges on Cauchy’s solution of the (linearized) 

8*i(~*, t )  = ? ~ i 8 ~ j ( ~ * , Y * , ~ ~ , t * - A ~ ( ~ * , Y * ) )  (6) 

with 0% being the vorticity far upstream and 

Equation (6) states, simply, that the vorticity downstream consists of upstream 
vorticity which has been convected along the mean flow streamlines, Y* = constant. 
Because vorticity is a vector quantity it has been rotated and stretched in places 
where the mean streamlines are curved. 

In  equations (6) and (7)  super and subscripts i a n d j  indicate tensor components, 
the summation convention for repeated Subscripts or superscripts being used. The 
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*'s in (6) and (7)  indicate dimensional variables and the tildes will be used for com- 
ponents in x* and no tilde for components in Y*, @* co-ordinates. The drift function 
Af was defined by Hunt (1973, and earlier by Lighthill 1956) as the travel time, T*, 
of a fluid parcel from upstream infinity to  @*, Y* in the presence of the obstacle less 
the travel time over the same range in the absence of the obstacle. Thus, 

and 

where ]#*I  is the magnitude of the mean velocity with respect to  x* co-ordinates. 
The integrals are to be calculated along a mean-flow stream line. 

The fact that  Y* and @* appear as arguments in expressions (6) and (8) suggests 
the efficacy of formulating our theory in Y*, @* co-ordinates. Before doing so it is 
convenient to introduce non-dimensional variables: U,, the uniform mean velocity 
far upstream of the obstacle, and L,, the integral scale of the incident turbulence, will 
be used to  non-dimensionalize velocities and lengths. Let a be a length scale of the 
obstacle and e denote the ratio L,/a. Then the non-dimensional and dimensional 
variables are related by: 

x* = xL,; k* = k/L,; f f* (x* /a) ,  fi*(x*/L,) = U,(O(ex), f i (x));)  

(T*, @*) (x*/a)  = - Lw uQ (Y, @) ( € X ) .  
€ J 

We now introduce the T, @ co-ordinate system by defining X1 = a>/€, X 2  = Y / E  
and X3 = 5 3 .  The functional dependence of U is of the form U(eX),  as in (9). SO, when 
e < 1, U is a slowly varying function of X. When measured in this new co-ordinate 
system the Oi of equation (6) become 

where yj  = (a5i / i3xk)  p$. Thus, in @, Y co-ordinates, 

1 
0 

(11) 

follows from ( 7 )  and the definition of X. The simplicity of (11) as compared with (7) 
attests to the elegance of working in the X co-ordinate system. However, this elegance 
is not achieved without sacrifice; and the sacrifice is that the partial differential 
equations governing the fluctuating surface pressure field must now be formulated in 
curvilinear co-ordinates. See appendix A for definitions of the differential geometric 
notations which will be used in this formulation. 
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Poisson equation for the pressure 
An equation for the pressure can be derived from the inviscid equations of motion 
for an incompressible, constant-density fluid. In covariant form these equationa are 

a 
(12) 

Uti = 0 (13) 

- = at ui + ~ i u i  ; 5 9  

(Lumley 1970). Taking the covariant divergence of (12) using (13) and the identity 
g:{ = 0 (Hawking & Ellis 1973) 

- ,"P; ii = u;iu;j f uj(uf ji - Ufij) 

. .  
= Ui iU l i ,  

gij is given in appendix A by (A 1) .  Linearizing (14) and using the facts that gi5 = 0, 
i # j and giirli = 0: 

u and U being the turbulent and mean components of the velocity field. Equation (15) 
is only valid for the present form of metric, €or giiI'$ is not in general equal to 0: 
other terms would, generally, appear on the left-hand side of (15). (This fact that the 
Laplacian operator retains its form under conformal transformation is well known.) 
It follows from (9) and (A 4) that 

-giiPii = 2u;iu;j, (15) 

r j k  = o(B), uf5 = o(s) and Uii = o(1). 

Thus, to lowest order in B and using the incompressibility ( Ufi = 0)  and irrotationality 
( Ut,  = Uf,) of the mean flow, 

- g v i i  = 2{ u;,(u;, - Uf,) + U;,(uf, + u?,)}. (16) 

The terms which have been dropped from (1 5) involve higher derivatives of U, hence 
(1  6) has the nature of a ' slowly varying ' approximation. Physically, this approxima- 
tion ignores variations of the turbulent velocity associated with curvature (dj - u:,). 

The boundary condition to be used with (16) is obtained from the 2 component of 
(12) evaluated on X2 = 0 where u2 = 0. Thus, after linearization, 

- g 2 2 ~ ; 2  = ~1~;,+~1u;,  = 2u1r;,ul. 

Thence, by irrotationality and the fact that qi = Pa, 

-g22P2 = 2ulU:, on X, = 0. (1') 

This boundary condition expresses a balance between centrifugal and pressure gradient 
forces on the curved boundary X, = 0. 

The turbulent vorticity is already known (cf. equation (6)) and the turbulent 
velocity may be determined from a vector stream function as shown in appendix A. 
Thus 

(184  

- gii$;ii = ui. (184 

ui = Tpgkk$; k i, 

and to lowest order in B the stream function $ satisfies 
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The boundary condition u2 = 0 on X ,  = 0 can be satisfied by appropriately extending 
the vorticity field inside the surface 5, = 0 (see Batchelor 1967, p. 86). Thus, the 
right-hand side of the Poisson equation (16) for the pressure can be considered known. 

Fourier representation of the turbulence Jield 

Consider the situation depicted in figure 1. The turbulence far upstream of the obstacle 
may be generated by a grid, downstream of which it becomes very nearly homogeneous 
and isotropic. Inhomogeneity and anisotropy are the introduced as the turbulence 
flows around the obstacle. Because the incident turbulence is homogeneous we let 
the vorticity of the upstream turbulence be represented by the Fourier integral 

The inhomogeneous turbulence near the body is represented by 

{u'] = /I/", { (k,X2:~X,)exp[-i(k,X1+k3X3-k1(t-A~,,))]d3k (20a) 

P 
and 

Oi(k, X , :  EX,)  exp [ - i ( k l X 1 + k 3 X 3 - k l ( t  -A$/e) ) ]d3k  (20b)  
"i = /J/:- 

where A$ = A T ( S 1 ,  0). (Actually A$ = co but we may define A$ as 0% -1im (qlnX,) 

where 0% is finite.) It follows from (20 b ) ,  (1 9) and (6) that 
xz+o 

Gi = yjO& exp [ - i (k ,X2  + k,(AT - A $ ) / E ) ] .  (21 1 
Substituting (20) into (16) and equating Fourier coefficients, noting that 

a /aXl (A$ t+Xl )  = l / l i l 1 " 2  Q0-2, 

(it will not prove necessary to retain an 0 superscript on Q) gives 
0 

P,, - L2P = 2Ck2( Uf,(iQ-2kl 4i1 + a:,) + Ut2(iQ-2kl 4i2 - a:2)) (22) 

to lowest order in E ,  where L2 = Q-2ki + Similarly, from (18) and (20) we obtain 

p2,-L2p = - Q-2Oi. (23) 

f 2  = - 2Q2-2alu;, (24) 

The boundary condition to (22) is 

on X, = 0. The boundary condition a, = 0 on X ,  = 0 and the gauge condition on + 
are satisfied to the present order of approximation by extending G1 and O3 anti- 
symmetrically into the boundary and G2 symmetrically into the boundary. Now, we 
have shown in (9) that U is a function of E X ;  thus sZ(sX) - Q(0) + O(E)  and 

Ufj(EX) = UfJO) + O(E2). 

For this reason the variations of Q and Ej from their surface values may be ignored 
and (22) may be integrated with the boundary condition (24) treating sZ and Ut as 
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constants. We use a standard Green's function method, putting S, = 0 in the solution 
to obtain the pressure fluctuation on the boundary in the form 

A similar solution to (23) for @ can be found and then substituted into (25) via (18a). 
To obtain an asymptotic formula for Po the expansion of AT about X ,  = 0, 

AT = - q In (EX,)  + X ( ( s S 1 )  + 0(eX21n e x 2 )  (B 4) 

derived in appendix B, must be used. (For clarity, we reiterate EX', = Y ,  EX* = a). 
The essential feature of (B 4) is the log-singularity. This singularity is characteristic 
of flows with bluff stagnation points. 

A complete analysis of (25) can be found in (Durbin 1979); here we quote the result 

- ik3 Lx, + k,  Lx3) + W, (3 x3 

where 

\ m = L+ik, ,  

I x1 = s ~ n 2 + ( ~ m a ~ ) / ( l + i k 1 q / e ) ,  Q2q 

m 
x2 = a: (L(  1 + ik,q/e)+ ') ' 

One-dimensional spectrum 

Having the solution for Po in hand we may now compute spectra and variances of the 
fluctuating surface pressure field. The one-dimensional spectrum is defined by 

where the overbar denotes statistical averaging. This is a frequency spectrum; as 
usual in RDT, k,  plays the role of a frequency (i.e. not a local wavenumber). The 
function O,, could alternatively have been defined as 

'sm P'(t) P'(t + 7 )  eikr7 d7. 
27r --m 
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( 2 6 )  and (27 )  allow us to evaluate 1A?,,12 once given &:&&:the pressure field is related 
statistically to the upstream vorticity. This relation can be represented as 

- 

where the identity lr(2 + iy)12 = ( 1  +yz) nylsinh (my) has been used and 5 = tan-' 
( k 2 / L ) .  The values of Qii can be calculated from the expressions 

Qii = aiaz (no summation and * denotes complex conjugation), 
* *  Qij  = (aiai +ai aj), 

with 
a1 = - Uf2klk ,+iUtlk , f i2L,  

a2 = Utl !2-2kl k ,  + i Utz Lk3 + ( 1  + ky q2/s2)-l 

f i-2klk3(L + k1k2q/a) - S l z L 2 k , q / ~ ( L k i q / ~ -  k2) 
L 

and 

These ai are coefficients of &; in (26)  after (27)  has been substituted. The form of 

a3 = Ufz(R-2k! + L2Q2) - iUf l  ZLk,. 

&; & i ( k )  is restricted by specifying that the upstream turbulence be homogeneous and 
isotropic: 

For E ( k )  we use the von Kkmitn spectrum 

#mE(k) = p2g3 k4/(g2 + k2)17'6, ) 

O,,(k,) can be computed after equations (29)-(33) are substituted into (28) although 
the integral must, in general, be evaluated numerically. Low and high wavenumber 
limits can, however, be determined analytically. (The details of calculation are given 
in Durbin 1979.) 

To lowest order in E? 

t As a check on our algebra, this result has also been obtained directly from (5.47) of Hunt, 
(1973) (Durbin & Hunt 1979, equations (2.13) and (2.15)). 
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Note that the right-hand side of (34) is 0(1) in E ,  because El is O(s); and that (34) 
does not depend on the specific form of E ( k ) :  it applies to  any initially isotropic 
turbulence. Since q = (e/Utl)stagnstion (see appendix B), O,,(O) = P2/n a t  the stag- 
nation point (where, by its definition below (21), fi = 0). 

The low frequency pressures, i.e. the spectrum (34), are produced solely by the djz 
component of upstream vorticity, and since k, = 0, by the u1 component of the up- 
stream velocity. Near the obstacle this vorticity is stretched singularly and rotated 
into the streamwise direction (Hunt 1973, figure 7)) producing large velocity fluctua- 
tions normal to the surface. These interact with the mean rate of extension normal 
to the surface to produce pressure fluctuations (through the term UH2uf2 on the right- 
hand side of ( 15)). 

As k,q/e + 03 we find 

Since Utl and Ut2 are O ( E )  O,, will be O(&) while obeying a -9 power law in k,. 
(This is to be expected since the high frequency spectrum of the surface velocity is 
proportional to k$ (Hunt 1973).) In  spite of the present derivation this asymptote 
is valid as k ,q /c  + co for arbitrary E (as noted by Hunt 1974). 

The asymptote (35) is made up of contributions from all three components of the 
upstream vorticity. This is because the singular straining, which a t  small k, caused 

to  predominate, is obscured at large k, by the piIing up of vortices around the 
surface of the obstacle (Hunt 1973, figure 7) .  This complicated mechanism of vorticity 
distortion leads to a rapid fall-off of O,, a t  high frequency. 

At the stagnation point, fi = 0, (35) does not apply. A detailed analysis of the 
stagnation point shows that 

@,, Ejky3 e-nkidh (36) 

(Hunt 1974; Durbin 1979). (The result of Hunt, 1974, contains an error.) Thus, near 
the stagnation point piled-up vortices cancel more effectively than a t  other places 
around the obstacle and produce an exponentially decaying spectrum. Our analysis 
of the stagnation point also shows that all the results in this paper, with the exception 
of (351, are valid there. The facts that our co-ordinate system is singular a t  i2 = 0 
and that the expansion (B 6) is not valid at = 0 are, thus, for the most part irrelevant ! 

The intensity of pressure JEuctw.ations 

The ‘slowly varying’ approximation for the mean flow yields a consistent approxi- 
mation to the spectrum a t  all wavenumbers. Consequently it is not, in general, 
possible to drop any terms in the rather complex expression (29) for /pol2 or in the 
integral (28) for a,,. However, when variances are being calculated great simplifica- 
tion can be made. The expression 

- 

~ = ~ ~ ~ m  - w  m d 3 k  (37) 

contains an exponential dependence on I/€ through the term exp { - kIq(n - 2() /~}  
(equation (29)). Therefore p’2 can be obtained accurate to lowest order in E by letting 
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k,  -+ 0 in the integrand in equation (37 )  keeping k lq /e  = O(1). We find that 

where x = k,q/c and Aa = [Uflq/3/el2. This result applies to any initially isotropic 
turbulence, as did (34 ) .  Amazingly, Ip  is exactly equal to 0.5 for any SZ. Thus from 
( 3 8 )  and (39 )  

p'2 = €A2/2q .  (40 )  

Pip" = P"/2q. (41 )  

In fact, since U t l q / e  = 1 at stagnation points, (40 )  implies a stagnation pressure 
- 

If we use the expression for q derived in appendix C for an elliptic cylinder, assuming 
that its principle axes are in the ratio alb  = y and that a = 0 ,  we find 

- 
Pi2 = &(y + 1)"p". (42 )  

When the flow is towards a blunt stagnation point y < 1 and P:/p2e = 4; but when 
the stagnation point is sharp (PL2//32e) z ty2 % 1. 

The facts that  k,q/e  = O(1) in (39 )  and that the spectrum falls off rapidly a t  high 
frequency (36 )  led Durbin & Hunt (1979) to  suggest the approximation 

as an interpolation formula valid for all E. This formula reproduces the stagnation- 
point pressures of ( 4 )  and (41) when € + 00 and € + 0 respectively. Using (43 )  we can 
generate an approximate form for P ' 2  for arbitrary scales of turbulence (e) and 
arbitrary obstacle geometry (9,  see figure 6 ) .  

Cross-stream integral scale 

The integral scale, Lc) along the body generator is defined by the relation 

For the present theory we find 

TlP2 P'2Lsp = - (( u y +  ( U y )  + O(e2). 
3g2e 

- 
(45) 

Equation (45)  predicts that  F2L$  tends to  zero as e tends to zero since the covariant 
derivatives of U1 are O(e) ,  We have seen that p'2 is O(e) as e + 0 so L$ itself is O ( i )  
as E -+ 0. Thus, correlations with integral scale comparable to that of the velocity 
field of the upstream turbulence will be produced when small scale turbulence impinges 
on a bluff body. It is the @, component of vorticity alone which enters the expression 
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FIGURE 2. The results in (38) and (45) have a straight-forward physical interpretation: owing 
to distortion, eddies with streamwise length scale, L,/k,, of order (a)  make the dominant 
contribution to  3. But cross-stream dimensions are uneffected by distortion, so their dominant 
contribution is from L,/k,  = O(L,). This figure is a schematic representation of the geometry 
of a ‘dominant’ upstream eddy far upstream and near to the surface. 

(44). Hence, it is the ‘piling-up’ of upstream vorticity rather than vortex stretching 
which determines p‘2L:. 

If we define a ‘streamwise correlation length’, L:, by 

L? = nO,,(O)/F2 

we find L$‘ = O(l /s )  (by (34) and (40)); thus correlation lengths in this direction are 
of the order of the body dimension. It is the 6% component of vorticity, being stretched 
round the cylinder, which is responsible for these long correlations in the streamwise 
direction. 

Figure 2 is a depiction of the geometry of a typical eddy responsible for surface 
pressure fluctuations. This picture summarizes the physical picture which RDT 
provides. 

4. Discussion and comparison with data 
Many experimental measurements have been made around circular cylinders in 

turbulent flows. Therefore we now reconsider our general formulae in this special case. 
When the expressions given in (C 10) are substituted into (34) we obtain the result 

It appears that as one moves away from the stagnation point a t  8 = 0 the energy in 
low wavenumbers decreases, becoming O(e2) at the top of the cylinder. At high wave- 
numbers, from (35), 

8nI’(u) o,, - 9 3 ~ + s i n ~ p p 2 .  (47) 
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FIGURE 3. Frequency spectra at various angles around a circular cylinder; E = 0.1. 

Hence we have the opposite trend of O,, increasing with 8. The manner in which 
these two asymptotes connect up has been found by numerical integration of (28). 
The results are displayed in figure 3. 

When 8 - 0, O,,(k,) is reasonably flat until k, - 0.2. It then drops off rapidly 
with further increase in k,. When 8 - nl2,' @,,(k,) has a very very small amplitude 
when k ,  < 0.1. It rises away from this low wavenumber level, reaching a peak value 
when k, - 0-9, after which it rapidly transforms into its - 9 high frequency behaviour. 

I n  figure 4 O,, has been plotted for various values of E .  The curves for E = 0.05 and 
E = 0.1 display the E dependence equations (46) and (47) lead one to  expect. When 
k,  > 0, a,, increases with E ,  but the low wavenumber asymptote is independent of E .  

The curve for E = 0.4 might, a t  first, seem inconsistent with (46). This is not so, for 
it was obtained by integrating the whole of (29) and hence contains 0 ( e 2 )  and higher- 
order terms. Of course, other 0 ( e 2 )  terms have been neglected by the slowly-varying 
approximation so retaining O(s2) terms in figure 4 does not, in principle, improve the 
accuracy of a,,; it still has an error of O(s2) a t  small k,. The present theory can be 
used when E = 0.4, or larger, but one must remember that it neglects order e2 terms 
when doing so. 

Recent experiments by Kawai, Junji & Hatsuo (1979) show quite dramatically 
the reduction of the amplitude of the surface pressure spectrum a t  frequencies greater 
than zero as E decreases. Their measurements were a t  the stagnation point, of two- 
dimensional square prism, and, as expected, their low frequency asymptotes were 
independent of E .  The slope of Kawai et al.'s spectra a t  high frequency was z - 3, 
somewhat smaller than our - prediction. It is very likely that, a t  high frequency, 
nonlinear transfer significantly alters our linear predictions. 
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FIGURE 4. The spectrum at 0 = +n as a function of E .  

The formula (40) for p’2 shows that 

pt = ( P ‘ 2 ) t  = d/3 cos 8 (48) 

for a circular cylinder. At the front of the cylinder (8 = 0)p‘ = E ~ P  while at  the top 
(8 = &n)p’ = O(&) because Utl vanishes there. 

In figure 5 limpt(6)/Pe# has been plotted along with data from Batham (1973) and 

Brunn & Davies (1975). In  the experiments &/Urn = 0.1 and values of E were 1-1, 
1.0 and 0.38; as indicated in the figure caption. 

The data we have included are from flows which the investigators felt to be critical. 
(The Reynolds numbers were all greater than 2 x lo5, while critical Reynolds numbers 
were all less than lo5.) Consequently, these experimental results are independent of 
Reynolds number, the separation point, and hence the wake, is as far to the rear as 
possible, and coherent vortex shedding, which might otherwise dominate the measure- 
ments, is largely suppressed. These consequences are confirmed by Brunn & Davies’ 
(1975) experiments and by Batham’s (1973) experiment using a smooth cylinder. 
Batham’s rough cylinder produced Reynolds number dependent vortex shedding; 
but his data on pt for 6 0 . 4 ~  were independent of Reynolds number, so we have 
included them in figure 5 .  

The experimental measurements of p‘ all show a peak beginning a t  8 N 47r - 37r and 
centring on 8 N 0-6n. This is associated with unsteadiness of the separation point. 
Hence, our theory can only be compared with measurements made on the front face 
of cylinder, 6’ 6 3n. 

The experimental data presented in figure 5 have been adjusted in an attempt to  
removed pressure fluctuations associated with the wake. On the basis of an assumed 

6-0 
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FIGURE 5 .  Theoretical and experimental r.m.8. pressures: values of E a m  labelled on the theoreti- 
cal curves and p w 0.1 for all sets of experimental data. The E = 0 curve is our new small- 
scale result and the curves labelled E = 15 and e = 100 follow from quasi-steady theory. -, 
theory; 0 ,  E = 0.38; u, E = 1 - 1  (Bruun & Davies 1975); 0, E = 1-0 smooth cylinder; 0, 
E = 1.0 rough cylinder (Batham 1973); 0, E = 15 (Tunstall 1974). The points labelled x are 
unadjusted values (see (49)) of p‘ for Batham’s rough cylinder. 

lack of correlation between contributions by the wake and incident turbulence to p‘ 
the adjusted value has been defined as 

- -  
p‘ = (Pi2 - P;”+, (49) 

where Pi is the pressure measured in a turbulent stream and PA that  measured in a 
uniform stream. The difference between p’ and (P;z)* was invariably small, indicating 
that pressure fluctuations on the front of the cylinder are largely due to the incident 
turbulence. 

In  practice, the wake fluctuations may not be totally uncorrelated with the incident 
turbulence. This question, in the context of equation (49), has been dealt with com- 
prehensively by Britter et al. (1979). I n  light of their conclusions, and the smallness 
of our adjustment, we feel (49) to  be reasonable. I n  figure 5 some unadjusted data 
points - marked by crosses have been included to be compared with the open circles 
and to illustrate the magnitude of our adjustment. 

Tunstall (1974) has shown quite definitely that when a/L,  4 1 the variation ofp’  
with 8 is given by quasi-steady theory in which measured values of the mean pressure 
coefficient, Cp(8), are used. His measurements on the chimney a t  Fawley generating 
station are shown in figure 5 and compared with the formula (equation (4)) 

p p p  = ( 5  - 4 cos2 O)*/& (50 )  

evaluated a t  E = 15. This formula is based on a potential flow without a wake. When 
Tunstall used his measurements of C, - instead of potential flow - to  predict p‘ he 
found almost perfect agreement with observed values. An evaluation of (50 )  with 
e = 100 is also shown in figure 5 .  
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The theoretical curves in figure 5 bracket the laboratory data and a t  small 8 the 
theoretical trend for p'/pe* to decrease with increasing E is reflected in all the data. 
When 8 is near $n the reverse trend is predicted: p'/,!3e* should increase with E at 
small E (at large E it  decreases as l/d). Because of unsteadiness ofthe separation point, 
mentioned earlier, the data in figure 5 cannot be used to verify this trend. The observed 
angular dependences of p' in figure 5 are certainly similar to those predicted, realizing 
of course, that the theory applies to extreme values of E .  

The extrapolation formula (43) has been evaluated with q = + (circular cylinder) 
and with q = 2 (flat plate). It is compared with experimental data in figure 6. In 
addition to measurements on circular cylinders, included in this figure are measure- 
ments on other bluff bodies such as: a two-dimensional flat plate with a filled-in wake 
(Bearman 1972); a model cooling tower (Propper 1977); the side of a two-dimensional 
square prism (Lee 1975); and a circular disk (Marshall 1965). The data included in 
figure 6 broadly follows the tendency ofp' to decrease as e decreases. With the exception 
of the solid triangle, the data points for circular cylinders lie on the appropriate curve 
(q = +). Bearman's data for a flat plate also lie on the appropriate curve (q = 2). One 
would expect the open square to lie very nearly on the curve for q = 2: it lies just 
below it. The open diamond was measured in a three-dimensional flow and so cannot 
be predicted from the present theory. We have not yet been able to obtain theoretical 
results for three-dimensional obstacles; but this datum point suggests pressure 
fluctuations would be larger: naturally, one is hard pressed to make such a statement 
on the basis of one point. 

In figure 7 the p' curve for a circular cylinder (a, = b )  has been replotted along with 
p' curves for elliptical cylinders (with a = 4 b )  with zero and $n angles of incidence. 
The curve with a = 4 b ,  a = 0 is similar to that with a = b although it is flatter for 
large 8 and more peaked at  small 8. This is a consequence of the changed angular 
dependence of W,.  When a = 4 b  and a = &n, p' first increases with decrease of 8 
because El increases. Near the side of the cylinder (8 = 0)  Ufl + 0 ;  hencep' must also 
tend to zero. This latter behaviour has been sketched qualitatively with a dashed line 
in figure 7. 

The quantityp'2Lf is independent of 8 for 

by ( 4 5 ) .  (On elliptical cylinders this quantity will have an angular dependence.) The 
length L< is itself a function of 8 and can be calculated from ( 4 8 )  and (51): 

L; = 2n/(im cos2e), (52) 

as is shown by the upper curve in figure 8 .  The formula ( 5 2 )  depends on the assumed 
form, (33), of E(lc). Therefore, the shape of the curve in figure 8 is more important than 
its actual magnitude. 

The quasi-steady theory gives L$ = 0.5 for large e andisotropic upstream turbulence. 
This is also shown in figure 8. 

Data from Batham (1973) and from Bruun & Davies (1975) have been plotted in 
figure 8. Only Batham's smooth cylinder data are included since his rough cylinder 
data (for L<) was dominated by vortex shedding. No adjustments for the wake have 
been made to the data. Bruun & Davies (1975) found L< to be 'closely related to the 
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FIGURE 6. R.m.s. stagnation pressures as a function of E .  Solid curve, theoretical extrapolatio~~ 
formula (43); A ,  Batham (1973); 0, Bearman (1972); A, Bruun & Davies (1975); 0, Lee 
(1975); 0, Marshall (1965); +, Propper (1977); @, Tunstall (1974). 
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FIGURE 7. Distribution of 1 .m.s. pressure around elliptical cylinders. 

correlation length of the turbulence in the approaching air’; so we suspect such adjust- 
ments would be small. We are not certain why there is a lack of agreement between 
the data of Batham and the data of Bruun & Davies for 6 M 1 .  

We conclude from figure 8 that again the theory encloses the data, predicts the 
trend that L{ decreases with increasing 6 ,  and is suggestive of the observed angular 
dependence (excluding data points a t  +n, which are in the separation-dominated 
region). 
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FIGURE 8. Cross-stream integral scales. --, theory; A, E = 0.38; 0. E = 1-1 

(Brunn & Davies 1975); 0, 6 = 1.0 (smooth cylinder) (Batham 1973). 

Pressure fluctuations p' for cylinder with wake 

I n  3 1 we mentioned our assumption that, for present purposes, alterations of the 
potential flow near the front of a circular cylinder due t o  the wake can be ignored. 
To check our assumption p' has been calculated using Parkinson & Jandali's (1970) 
potential-flow model for a cylinder with wake. 

For the potential flow given by Parkinson & Jandali 

4 2  cos 01 cos 8' + cos2 a + 1 )  
Utl = 

cos a (cos 6 + COB I 
2 GOS &cosa (cosv cos J+ 2 cos 8'- 1)  + ( C O A X +  1) (1 + c ~ ~ &  cOs S) I 

(2 + 2 cos 28' + 8 cosO1 ~ 0 ~ 8 '  + 4 c ~ ~ 2 a ) i  /j and 
2( 1 + cos S) cos a 

= (1  + cosa) (1 + 2 cos 6 cosa + c0sZa) 

where 

(53) 

sin3 a 
cosS = cosa+- I c '  

a and k are empirical parameters related to  separation angle and base pressure coeffi- I 
cient by asepn = 7~ - 2a, C,, = 1 - k2. The variable 8' is a parametric co-ordinate 1 
dgfined by conformal transformation. It is related to  the actual angle around the 
cylinder by 

cos a sin 8'. 1 sec a + cos 8' [ 4 (sec a+  cosa) + cos 8' 
sin8 = 

I 
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FIGURE 9. Comparison ofp'in flows with and without a wake. The curve with u = corresponds 
to a critical-Reynolds-number wake, u = &/18 to a subcritical wake, and the unlabelled curve 
to a wakeless flow. 

For a wake a t  critical Reynolds number Parkinson & Jandali used a = 4. and 
k = 1.175. (Very nearly these values can be derived from Bruun and Davies' data.) 
The corresponding profile of p' is compared, in figure 9, with that for a wakeless flow. 
Also included in figure 9 is the sub-critical case a = 57~/18, k = 1.4. At 0 = 0 the 
order of the curves from top to bottom is: no wake, criticgl wake, and sub-critical 
wake. The difference between the wakeless flow and the crjtical flow is small; the 
discrepancy between theory and data in figure 5 is due more to the finiteness of e and 
to unsteadiness of the separation point in the experiments than to alterations of the 
mean potential flow by the wake. Since the stagnation-point formula (43) depends 
only on q, it might be worth noting that (53) gives p = 0.533 (little different from 
q = 4) for a critical wake. 

5. Conclusions 
New RDT calculations have been presented for surface pressure fluctuations pro- 

duced by small scale turbulence. The behaviour of small-scale turbulence undergoing 
distortion was found to differ drastically from that of large-scale turbulence. It can 
be concluded that predictions of quasi-steady theory are unrealistic when the incident 
turbulence scale is not large. Indeed, we have found experimental data at inter- 
mediate values of e to lie largely between theoretical predictions for € -+ 0 and for 
6 -+ co (figures 5 and 8). The changes with e in magnitude and angular dependence of 
experimental values for p f  and L i  are much as predicted. 

Unfortunately, it is not practical to do RDT calculations for intermediate values 
of E .  However, our understanding of turbulence distortion, based on asymptotic 
solutions, has enabled us to propose a very reasonable extrapolation formula for 
stagnation-point pressure fluctuations. Figure 6 shows that this formula does a good 



180 P. A .  Durbin and J. C. R. Hunt 

job of correlating experimental data. Further interpolation formulae have not yet 
been found; but our asymptotic solutions are a significant step towards an under- 
standing of distorted turbulence, which we hope will lead to practical prediction 
techniques. 

Appendix A. Relevant differential geometry 

A rudimentary discussion of differential geometry with application to the Navier- 
Stokes equations can be found in an appendix to Lumley (1970) and a more complete 
discussion also with reference to the equations of hydrodynamics is contained in 
Hawking & Ellis (1973). The notations used here are taken primarily from the latter 
reference. Thus, covariant and contravariant vectors are denoted by subscripts and 
superscripts respectively, e.g. dxi and dxi. In  obtaining equation (10) we have used 
that fact that the vorticity vector (which can be written wi = ( o ( / ( d l l  dli, cf. Lamb 
1932) transforms contravariantly. 

A tensor of fundamental importance is the metric, which provides a definition of 
the length in the X co-ordinate system. The components of this tensor me 

since in our case x is a Euclidean co-ordinate system (E3) .  The metric also performs 
the valuable function of interconverting covariant and contravariant vectors: thus 
dxi = gi jdxj .  With the present definitions of X, 

where R2 = Singular points of the conformal mapping, which are defined as 
points where 0 = 0 ,  must be excluded from the manifold covered by X. Indeed, the 
analysis in appendix B is not strictly valid within a neighbourhood of O(e) of stag- 
nation points. To avoid confusion it should be noted that the co-ordinate velocities 
xi of the mean fluid motion are zero with the exception of U1 = 8 1  = b/c = 1012 .  

(Recall that the velocity vector in the x co-ordinate system is distinguished by a tilde.) 
Covariant differentiation will be denoted by ';' and partial differentiation by I , ' .  

Thus, 

u!j = uij + Uk. (A 3) 

The Christoffel symbol, r;,, for the present metric is equal to 0 if i o r j  or k equals 3 
and 

if i , j ,  k # 3. Here 8; is the Kronecker delta. 

components 
A skew symmetric tensor, termed the canonical 3-form, can be defined with 

r i j k  = Igl*'ijk. (A 5) 
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Here )gI = det (gij) = CP4. The familiar Euclidean skew symmetric tensor Eijk  is 
equal to 

68d 8: 8& = 8: S3, + 8; + 8i 8: @ 
- 8; 8; 8; - &,$a; 8; - 8: 8; 8; 

where [ . . . ] denotes the components of a skew symmetric tensor. With the present 
metric 

q i i k  = 6lgl-i aq 8; @I (A 6)  

qijkqlrnn = 6 8k (A 7)  

(A 8) 

SO 

The vorticity vector, in covariant form, is 

"i = r i j k U  
k ; j  

and if we define the stream function, Y ,  by 

uk = yklrngln$F. 

it follows from (A 7) ,  (A 8) and (A 9) that  

Ui = - ~ k j i q k ~ m g ' ~ ~ n , i  
\ 

= 6 8FQ 8{ gznCnj .  

For a diagonal metric (A 10) becomes 

"i = - g%pkk + g i k y H k j  

= -gkk@fkk 

if Y satisfies the gauge condition 

(see Batchelor 1967). 
$ti = 0 

Appendix B. Expansion of the drift function for a bluff body 
Our small E expansion requires a t  one stage the first term of an expansion of the 

drift function about \r = 0 when @ # 0. This term need only be determined up to an 
additive function of @. 

Consider a bluff body (without circulation). Denoting the complex velocity potential 
by W it follows from the fact that the half angle a t  the leading edge of a bluff body is 
477 that  

(B 1)  
dW 
dz 
- = ( - w ) + f ( W ) + h ( W )  

l f J I Z  - I ~ l I s o ;  go = l f(0)l-z (B 2) 

where f and h are analytic, f (0) = O( 1) and h( W )  = O( W )  as W -+ 0. Thus we write 

near the stagnation point, W = 0. The drift function is approximated as \r -+ 0 by 
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Carrying out the integrations we find 

AT N -qInIY/+O(YlnY)+C(@).  (B 4) 
q = 29, and C(@) is an undetermined function of @; whose exact form is irrelevant. 
I n  writing (B 4) it has been assumed that = O(1). Thus, the analysis done in this 
appendix does not apply at the stagnation point; although, as mentioned in the text, 
most of our results remain valid there. 

By definition (see I3 2 )  

alternatively, 

If we write W as a function of the complex variable z, defined such that as z --f z, W and 
d W/dz --f 0 then 

q = l/(d2W/dZ21z=zs. (B 7) 

Appendix C. Evaluation of geometrical terms and velocity derivatives for 
Elliptical Cylinders 

I n  this appendix we obtain expressions for the mean flow quantities arising in the 
present theory for the case of flow round an elliptical cylinder. The complex velocity 
potential, W ( z ) ,  for the flow round an elliptical cylinder, with principle axes a and b, 
consisting of a uniform velocity at angle of incidence a far from the surface, is des- 
cribed parametrically by the equations 

a-b  
A2 = - 

2 '  

W = (6e-i. + / C )  (C 2) 

(Batchelor 1967, p. 428). The normalisation used in this appendix is (a + b ) / 2  = 1 and 
IU,] = 1. I n  (C 1) z is the co-ordinate system of the ellipse and l; the co-ordinate 
system of a circle: the conformal transformation (C 1 )  defines a one-to-one relation 
between the co-ordinates of the circle and points of the ellipse. Thus, on the surface 
of either 6 = exp {i(r- S)}. The first and second derivatives of W on the surface of 
the ellipse are 

L 

dW dWdl; 2isin(a-6) 
dz dl; dz bcose-iasin0' 
-=--=-- 

(C 4) 
d2 W d2 W dl; 
dz2 - dzcdz  = 

- 2 eie {e-iu(b cos 6 - ia sin 6 )  - 2ih2 sin (a - 0)) 
(b  cos 0 - ia sin 6)s 

-- 

There are three quantities entering the present theory which are dependent on the 
geometry of the obstacle. First, we require the covariant derivatives U t l  and U f 2  on 
the surface. From (A 3) and (A 4) we find 

and similarly 
, (C 51 
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Equation (C 5) can be put into a more convenient form by substituting 

1 0 1 2  = (U1)2+(U2)2 

and invoking incompressibility and irrotationality to show that 

The overbar in (C 6) denotes complex conjugation. Secondly, we need the geometrical 
parameter 

(see (B 7) ) .  And, finally, the surface speed 

i2 = 101 = J d W / d z j  (C 8 )  

is needed. Substituting (C 3), (C 4) into (C 6)  to (C 8) gives 

2s {eia-@(a2 sin2 8 + b2 cos2 8 )  - 2ih2 sin (0 - a) (1 - h2 e-2i@)} 
(az sin2 8 + b2 cos2 8)2 ’ (C 9) 

Uf,+iUt2 = 

q = 6(a2 sin2 a + b2 cos2 a )  
and 

where 6 = 2L,/(a* + b*) and b = 2-a  (* denotes a dimensional variable). 
For the special case of a circular cylinder a = b = 1,  a = 0 and 

I 
I 

Utl + Ut2 = 2e(cos e - i sin e),  
q = B, 

= 2 IsinBI. 
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